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What, how, and why?

I Waves can be present in a turbulent flow. We know they may alter
the dynamics if they do.

I Can we “extract” the waves from the flow? Can we understand how
they interact with other structures?

I Characterization of the e�ect of waves, and measurements of the
amount of energy in wave modes has been done mostly indirectly.

I Space and time resolved spectra (e.g. [Yarom and Sharom, Nature
Phys (2014); Cobelli et al, PRL (2009)]) can study the e�ect of
waves directly
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Systems studied

I Rotating turbulence and stratified turbulence

I Boussinesq model
I 3D DNS with pseudospectral code

I Free surface waves

I Gravitocapillary waves in water
I Profilometry technique [Maurel et al, Appl Opt (2009); Lagubeau et

al, Appl Opt (2015)]

I Quantum turbulence

I Gross-Pitaevskii equation
I 3D DNS with pseudospectral code
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Rotating turbulence
Anisotropizatioin due to the e�ect of waves
Ê

R

= 2�kÎ
k

(inertial waves, kÎ is parallel to rotation axis)

Preferential energy transfer towards modes with small kÎ (Wale�e, PoF
93). But exactly where are the waves?
[PC et al, PoF (2014)]
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Rotating turbulence
E(k, Ê)
Only in the larger scales energy accumulates along modes satisfying the
dispersion relation of inertial waves!
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Stratified flows
Previous works

I Boussinesq model with no rotation. Buoyancy is now the restitutive
force. Gravity acts in the vertical direction.

I Internal waves: Ê
S

= Nk‹
k

I Develop vertically sheared horizontal winds [Smith & Wale�e, JFM
(2003)]

I These cause Doppler shifting of internal waves [Hines, JAS (1991)]
I When the phase velocity of a wave matches that of the horizontal

wind Critical Layer absorption occurs [Hines, JAS (1991); Winters &
D’Asaro, JFM (1994)]

I This has been observed in the atmosphere [Gossard et al, JGR
(1970); Kunze et al, JGR (1990)]

I Theories of stratified turbulence don’t take this e�ects into account!
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Stratified turbulence
E(k, Ê)
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Doppler shifting and Critical Layer absorption appear! This indicates a
nonlocal transfer of energy from the small to the large scales.
[PC & P. Mininni, PRE (2015)]
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Free surface waves

Experiment of gravitocapillary waves in water:
Ê(k) =

Ò
tanh(h0k)

!
gk + “

rho

k3"

We varied the amplitude of the mechanical forcing

Injecting more energy creates bound waves and increases broadening!
[PC, P. Cobelli & P. Mininni, EPJE (2015)]
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Superfluid turbulence
Gross-Pitaevskii equation

I Topological line defects
I Vorticity is quantized and concentrated along

these lines
I Except along these lines, the equations can be

transformed to that of an ideal fluid
I These are “decay” simulations, an initial

condition is imposed and we don’t have
forcing.
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Superfluid turbulence (Gross-Pitaevskii equation)

L: box size, ¸: mean intervortex scale, a: vortex radius
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Kelvin waves

Vortex lines have tension and Kelvin waves can travel through them.
Below the inervortex scale we can have Kelvin wave turbulence.
Kelvin waves are generated by reconnection events
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Superfluid turbulence (Gross-Pitaevskii equation)
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[PC, P. Mininni & M. Brachet, PRA (2015)]
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Helicity in quantum flows

I H =
s

u · (Ò ◊ u)dV

I It is a measure of the knotedness of field lines and it can be
interpreted topologically [Mo�at, JFM (1968)]

I In ideal fluids, it is a conserved quantity
I Important in wide range of applications, from storm generation to

DNA biology
I Calculating helicity is not trivial, as velocity and vorticity are both

singular fields.
I Some authors have calculated helicity with topological tools, others

have filtered the fields, we have regularized them!
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Helicity dynamics for rings and knots

I Initial values of regularized helicity match other methods
I One ring and knot: No reconnection, helicity is conserved
I Two rings: reconnection but helicity also conserved
I Trefoil: reconnection, helicity is not conserved

[PC, P. Mininni & M. Brachet, submitted to PRL (2016)]

39 / 49



Two rings evolution
Before and after reconnection

U1
U2

Lines get to align before reconnection so helicity is conserved
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Trefoil evolution
Before and after reconnection

U

Lines don’t align perfectly, helicity is not conserved and
Kelvin waves are generated
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Helicity beyond simple knots
ABC flow

With the regularized helicity we can study complex flows

20483 simulation, H ¥ 480000�2
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Evolution of helicity in ABC flow
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E�ects of helicity in the flow
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Quantum tornadoes

Work in progress!

48 / 49



Thanks!
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